An integrative software package for gastrointestinal biomagnetic data acquisition and analysis using SQUID magnetometers
نویسندگان
چکیده
The study of bioelectric and biomagnetic activity in the human gastrointestinal (GI) tract is of great interest in clinical research due to the proven possibility to detect pathological conditions thereof from electric and magnetic field recordings. The magnetogastrogram (MGG) and magnetoenterogram (MENG) can be recorded using superconducting quantum interference device (SQUID) magnetometers, which are the most sensitive magnetic flux-to-voltage converters currently available. To address the urgent need for powerful acquisition and analysis software tools faced by many researchers and clinicians in this important area of investigation, an integrative and modular computer program was developed for the acquisition, processing and analysis of GI SQUID signals. In addition to a robust hardware implementation for efficient data acquisition, a number of signal processing and analysis modules were developed to serve in a variety of both clinical procedures and scientific investigations. Implemented software features include data processing and visualization, waterfall plots of signal frequency spectra as well as spatial maps of GI signal frequencies. Moreover, a software tool providing powerful 3D visualizations of GI signals was created using realistic models of the human torso and internal organs.
منابع مشابه
Recursively-applied Scanning Algorithms for Inverse Analyses of Gastrointestinal Biomagnetic Fields
The process of identifying dipolar sources of bioelectric current in the gastrointestinal (GI) tract is of great importance to the future of medical diagnosis. Superconducting QUantum Interference Device (SQUID) magnetometers measure the minute magnetic fields associated with electrical control activity (ECA) from GI smooth muscle. The phenomenology of abnormal ECA current propagation can offer...
متن کاملElimination of flux-transformer crosstalk in multichannel SQUID magnetometers
Multichannel SQUID magnetometers are being developed for signal-field mapping in biomagnetic experiments. A problem that becomes more serious as the number of channels is increased is the crosstalk caused by the mutual inductances between the individual sensing coils. A simple and effective method for eliminating this crosstalk is presented in this Paper. The method is based on a rearrangement ...
متن کاملThree-dimensional Simulations of Gastric Biomagnetic Dipoles Using Recursive Localization Algorithms
The reconstruction of the stomach's biomagnetic field is a challenging visualization task with significant applications to the diagnosis of stomach disorders. The results of a new computation-based approach to the inverse problem are presented here in addition to how they apply to the reconstruction of the stomach’s magnetic field. One of the primary advantages of the procedure is a realistic v...
متن کاملTheoretical and computational multiple regression study of gastric electrical activity using dipole tracing from magnetic field measurements.
The biomagnetic inverse problem has captured the interest of both mathematicians and physicists due to its important applications in the medical field. As a result of our experience in analyzing the electrical activity of the gastric smooth muscle, we present here a theoretical model of the magnetic field in the stomach and a computational implementation whereby we demonstrate its realism and u...
متن کاملCross-validation of microfabricated atomic magnetometers with superconducting quantum interference devices for biomagnetic applications
We compare the performance of a chip-scale atomic magnetometer CSAM with that of a superconducting quantum interference device SQUID sensor in two biomedical applications. Magnetocardiograms MCGs of healthy human subjects were measured simultaneously by a CSAM and a multichannel SQUID sensor in a magnetically shielded room. The typical features of MCGs are resolved by the CSAM, matching the SQU...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computer methods and programs in biomedicine
دوره 83 2 شماره
صفحات -
تاریخ انتشار 2006